
 Opensource.com: Git Cheat Sheet BY MATT BROBERG

The Essentials — When working with git on your own or
with others.
git status To remind you of where you left off. See a summary of

local changes, remote commits, and untracked files.
git diff To see the specific local changes to tracked files.

Use --name-only to see changed filenames.
git add To stage changes to your tracked and untracked

files. Use -u, -a, and . strategically.
git commit To create a new commit with changes previously

added. Use -m and add a meaningful commit message.
git push To send changes to your configured remote

repository, most commonly GitLab or GitHub.

Git is the dominant version control utility these days. Here’s how to be effective using it.

Twitter @opensourceway | facebook.com/opensourceway | CC BY-SA 4.0opensource.com

Basic Branching — Branches represent a series of commits.
git branch --all list all local and remote branches
git checkout <branch> change to an existing branch
gi t checkout -b <branch>
master

make a branch based off of master
and check it out

gi t checkout master &&
git merge <branch>

merge branch changes onto master

Important Flags — These are my personal favorites for
keeping everything organized.
git reset HEAD -- get back to the last known commit

and unstage others
git add -u add only the updated, previously-

committed files
gi t log --graph
--pretty=oneline
--abbrev-commit

for a pretty branch history. Create
a shell or git alias for easy access,
such as git lg

Getting Help
git <cmd> -h great for quick review of command flags
git <cmd> --help to dig into the full man pages of the command

Working with a Remote Repository — Once you get
into the flow, you’ll frequently contribute back to larger
projects, and possibly managing forks of forks. Here are
some tips for doing so.
git fetch --all downloads all commits, files, and

references to branches on all remote
repositories so you can then git checkout
or pull what you want to work on.

gi t pull --rebase
<remote> <branch>

Merge all commits since your last common
commit from the remote branch without
creating a merge commit

git stash Use this as needed to save uncommitted
changes so you can git stash pop them
onto a different branch.

git stash pop bring it back
gi t add [-A or . or --
<filename>]

Be intentional about what files you add
to your commits, especially if you want
to open a request to merge them into an
upstream project.

gi t commit -m
"commit message"

Most projects have a format they prefer for
commit messages. Look at CONTRIBUTING.
md files in the project or review previous
commits to get an idea of their format.

gi t push origin
<branch>

Push your current branch to your remote
titled “origin” and branch named <branch>

gi t checkout -b
<new_branch>

A shortcut for git branch <branch> &&
git checkout branch. It’s great for when
you want to experiment with an idea and
have a new branch to try it out on that can
later be merged or deleted.

gi t checkout master
&& git pull
--rebase

Great to get to the most recent commit for
a project you only infrequently follow.

gi t reset --hard
origin/master

For when you inevitably get lost in all the
git-fu and need to get to a known state.
WARNING: this erases all changes, even
commits, since the last commit pushed to
the remote origin on branch master.

gi t push origin
master

For when you inevitably do something
right! Send your changes up to your
remote titled origin on branch master.

Basic Flow — Daily usage of git, including flags
git init
git status
git add --all
git status
gi t commit -m "meaningful initial
commit message"

git show

cd to your local project
that you want to start
versioning with git. You
only have to run git
init the first time to
set up the directory for
version tracking.

git diff
gi t commit -a -m "Another commit
message. -a performs the add
step for you"

git status
gi t log --graph --pretty=oneline
--abbrev-commit

And you begin to hack
on your local files,
then commit at regular
intervals

gi t log --graph --pretty=oneline
--abbrev-commit

git reset --soft HEAD~3
git diff --cached
gi t commit -a -m "Better commit
message for last 3 commits"

After a while, you have
3 commits that would be
more meaningful as a
single commit

git status
git diff --cached
git add -u
gi t commit -m "Another commit
message. -u adds updates,
including deleted files"

git status
gi t log --graph --pretty=oneline
--abbrev-commit

git push origin master

Lastly, you delete some
unneeded files in the
current directory

Helpful Reads
• Read this excellent guide to your first git repository
• Learn more about git branching
• Dig deeper into reset and rebase

http://www.opensource.com
http://www.twitter.com/opensourceway
http://www.facebook.com/opensourceway
https://creativecommons.org/licenses/by-sa/4.0/
http://opensource.com
https://opensource.com/life/16/7/creating-your-first-git-repository
https://opensource.com/article/18/5/git-branching
https://opensource.com/article/18/6/git-reset-revert-rebase-commands

